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Abstract

In a recent paper it has been shown that the nuclear Ramsauer model does not
do well in representing details of the angular distribution of neutron elastic
scattering for incident energies of less than 60 MeV for 208Pb.  We show that
the default angular bin dispersion most widely used in Monte Carlo transport
codes is such that the observed differences in angular shapes are on too fine a
scale to affect transport calculations.  The effect of increasing the number of
Monte Carlo angle bins is studied to determine the dispersion necessary for
calculations to be sensitive to the observed discrepancies in angular
distributions.  We also show that transport calculations are sensitive to
differences in the elastic scattering cross section given by recent fits of 208Pb
data compared with older fits.

I.  Introduction

The nuclear Ramsauer model has been used for decades to explain features of the neutron
total cross section results.1,2 When precision data3 (with typical errors of only a few percent)
became available it was quite surprising that such a simple model could adequately represent these
data.4  A theoretical investigation5 of this “single-phase-shift slug model” demonstrated that
nuclear refraction essentially made all neutron path lengths in the nucleus equal for neutron
energies from a few MeV to approximately 60 MeV.  Franco6 had previously demonstrated that one
did not need a “single phase shift” but merely that the average of the phase shifts varied smoothly
with energy.  Subsequently a large amount of precision neutron total cross section data7 was
successfully fit with this model.8

 Azam and Gowda9 have recently proposed a more stringent test of the Ramsauer model and
have compared calculated angular distributions of elastically scattered neutrons with optical model
calculations.  The shape of the angular distribution derived from the Ramsauer model did not agree
in detail with the angular distributions derived from the optical model except for the forward
maximum.  They thus correctly conclude that this simple model does not give an accurate
representation of the neutron elastic scattering cross section.
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 The point of this article is to demonstrate that in spite of deficiencies in calculating angular
distributions with the Ramsauer model, it may be adequate for Monte Carlo neutron transport
calculations10,11,12 and may give more accurate results than using an optical model if these optical
model parameters have not been carefully fit to new, high precision neutron total cross section
measurements.  The Ramsauer model has several practical features that make it generally useful: (1)
it requires only 5-10 parameters to globally represent the total neutron cross section within 2% for
nuclei between calcium and uranium over the energy range of 6 to 60 MeV, (2) it can be computed
algebraically, and (3) it gives a reasonably accurate intuitive picture of the correct scaling
relationships for baryon number, isospin, and incident neutron energy.

First we present a rationale as to why the elastic scattering cross sections generated with the
Ramsauer model may be useful in transport calculations and outline an approach to incorporate
Ramsauer model results into transport codes. We then compare the differences in fits of elastic and
total cross section data over time and demonstrate that reliable fits to these data are very important to
the accuracy of transport calculations.  We then examine the standard angle bin structure of popular
Monte Carlo neutron transport codes and demonstrate their sensitivity to elastic angular
distributions.  We conclude with a discussion on the applicability of the Ramsauer model and the
issues to be addressed if better than 1% precision is desired in transporting elastically scattered
neutrons.
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II.  Ramsauer Differential Elastic Scattering Distributions

From equations (3) and (6) of the paper by Azam and Gowda9 we obtain

  

† 
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                                                                        (1)

where s(q) is the differential shape-elastic cross section, l is the orbital angular momentum quantum
number.   The summation S over integer values of l is to be taken from l=0 to lmax = R/  D  = kR
where R is the potential scattering radius,   D  is the reduced wavelength of the incoming neutron, a
and b are defined as in Ref. 5.  The sharp cutoff approximation is typically employed, so that lmax is
the integer nearest to, but less than, kR.

Camarda1 3 has suggested to us a formulation equivalent to Eq. 1 given as
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This expression can be integrated over angle to give the integrated elastic cross section as
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Azam and Gouda9 also introduced a useful concept called the “relative differential shape-
elastic cross section” g defined as
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The quantity g is typically tabulated and sampled in Monte Carlo transport codes when
sourcing elastically scattered neutrons to determine the scattering angle.  The energy of the
elastically scattered neutron is then determined using two-body kinematics.  The quantity g is
plotted in Azam and Gouda’s Figs. 1 through 21.  What we note from this comparison (Figs. 1-3
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and 6-8 in their paper9) is that the Ramsauer model compares favorably with the optical model
calculations for the forward maximum (0-20 degrees) in the elastic scattering distribution.  This is
not surprising since a Ramsauer model which fits the total neutron cross section also accurately
(within a few percent) predicts the zero-degree elastic cross section as given by the Wick limit1 4

which relates the zero-degree cross section to the total cross section.  The average elastic cross
section is also well described (to a few percent) by the Ramsauer model since the model is able to
fit the oscillations in the total cross section to the order of 1-2% and these oscillations are due to
variations in the elastic cross section.8 However, beyond 30 degrees Azam and Gouda9 have
demonstrated large discrepancies between angular distributions as calculated with the Ramsauer and
optical models (see Figs. 12 through 21 in Ref. 9). In the Appendix a simple two-radii extension to
the Ramsauer model is described which helps to alleviate the discrepancy at larger scattering angles,
but this extension is not considered in the body of the paper.

From the perspective of neutron transport, small-angle elastic scattering and average elastic
scattering properties are well described by the Ramsauer model for 5 < En < 60 MeV.   In Section
IV, we also show that the average large-angle scattering, which results in neutron removal from the
beam, is well described.  Since these quantities are the most important features of elastic scattering
for transport calculations we now demonstrate how these cross sections might be adapted for use in
a neutron transport code.

However, two problems arise from using Eqs.  2-4 in transport codes both associated with
discontinuities caused by using the sharp cutoff approximation for the summation in Eqs. 1 and 2.
The first problem is discontinuity in the shape of the predicted angular distribution for integer l, e.g.
s(q, kR=6.9) ≠ s(q, kR=7.0).  The second problem is that the zero degree cross section does not
extrapolate to the Wick limit except for integer values of kR=l.

These problems could be overcome by adding a nuclear surface to our square well potential
from which we generated the Ramsauer model.  A much simpler solution is to account for the cross
section due to a fractional kR, by introducing a smooth interpolation between successive values of
lmax that has been constructed to preserve Wick’s limit:

  

† 

s el q( ) =
D2

2
1+ a 2

2
-a cosb

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 2l +1( )Pl (cosq)

l= 0

lmax
Â( ) + (kR +1)2 - (lmax +1)2( )Plmax +1(cosq)[ ]

2

   (5)



Revised - April 16, 2004  7

This solution gets rid of the discontinuities in the angular shape as a function of
bombarding energy and correctly extrapolates to Wick’s limit at zero degrees when a2 « 1.  This
philosophy results in a slightly modified expression for the angular distribution of elastically
scattered neutrons
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Eqs. 5 and 6 have been used in the remainder of this paper for the purposes of generating
elastic scattering properties based on the Ramsauer model to compare with optical model results.
Expressions for a and b were taken from Ref. 8, and for the case of 208Pb were a = 0.103 and

† 

b = 3.674 35.0 - 0.8E - E( )  where E is the energy of the incident neutron.
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III.  Ramsauer and Optical Model Fits

For the purpose of neutron transport calculations we consider the optical model as merely a
convenient way of representing a large quantity of measurements.  To that end, we judge the
“goodness” of each set of model parameters on their ability to fit experimental data.  By this
criterion we judge the recent model calculations of Koning and Delaroche1 5 (K&D) as the best
representation of the newer, more precise total cross section measurements.7 We therefore take the
cross sections generated by K&D as our standard for comparison, i.e., we assume K&D are a good
representation of nature.

Different fits to the total, elastic, and reaction cross section data for n + 208Pb are plotted in
Figs. 1-3.  The K&D optical model fits (circa 2003) are compared with fits by Becchetti and
Greenlees16 (circa 1969) and with the Ramsauer model fit results from Ref. 8.  Inspection of Fig. 1
indicates that for n + 208Pb the Ramsauer model fits are significantly better at representing the total
cross section data than the B&G optical model fit.  In addition, for neutron energies 10 < En < 40
MeV, the Ramsauer model is also better than the B&G optical model fit at representing the elastic
and reaction cross sections, as shown in Figs. 2 and 3 respectively.  In fairness, however, it should
be noted that Beccetti and Greenless did not have access to newer data that indicates that the
imaginary potential decreases at lower neutron energies.

The Ramsauer model reproduces the angular distribution of elastically scattered neutrons
near zero degrees as shown at En = 14 MeV in Fig. 4.  While the Becchetti and Greenlees optical
model angular distribution, shown in Fig. 5, is somewhat better at reproducing the first maximum in
the forward direction, this model also does poorly at reproducing large-angle scattering.
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Fig. 1.  Different model fits to total cross section data for n+208Pb.
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Fig. 2.  Different model fits to elastic cross section data for n + 208Pb.
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Fig. 3.  Different model fits to the reaction (nonelastic) cross section data for n + 208Pb.
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Fig. 4. Angular distributions of elastically scattered neutrons for En = 15.45 MeV.  The
Koning and Delaroche optical model is compared with the Ramsauer model for 208Pb.
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Fig.  5. Angular distributions of elastically scattered neutrons for En = 15.45 MeV.  The
Koning and Delaroche optical model is compared with the Becchetti and Greenlees optical
model for 208Pb.
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IV. Monte Carlo Group Structure

Most neutron Monte Carlo codes (e.g. MCNP1 0, COG1 1, TART1 2) use the “equally-
probable-bin” method for sampling scattering angles. The angular distribution tables are a list of
m=cosq values representing histogram boundaries. The default data tables for these codes have 32
cosine bins, tabulated at a number of incident neutron energies. For an incident neutron energy E
falling between tabulated energies El and Eh, the distributions for El, Eh are randomly chosen with
probabilities Ph=(E- El)/(Eh - El) and Pl =1- Ph. From the sampled table, a bin is then randomly
selected and a cosine value is selected within it with a uniform probability.

The “equally-probable-bin” method tends to smear out fine structure present in the original
probability distribution. This smearing effect is markedly apparent in elastic neutron scattering
distributions for E > 5 MeV. Figures 6-8 show calculated bin densities for the Ramsauer and
optical models respectively when E = 14 MeV in 208Pb. For 32 bins, the two models yield
practically identical bin boundaries. The fine details of the distributions become visible only by
significantly increasing the number of “equally-probable-bins.”

The angular distributions of both Ramsauer and optical models are dominated by a
pronounced peak in the forward direction. We compared the predicted amounts of forward
scattering by a running a Monte Carlo simulation and estimating the scattering cone size with
respect to the forward direction. Fig. 9 shows the closely matching predictions of the K&D and
Ramsauer models as a function of energy.

The “equally-probable-bin” method is extremely fast but at the expense of accuracy. Much
of the detail of the original distribution is lost by the necessary assumption of uniform likelihood
within each bin. The sampling accuracy could be improved readily by increasing the number of
bins, but at the expense of more computer memory.   Alternatively, the table lookup technique could
be used. This method searches a table of increasing cumulative probabilities until the interval, j, is
found within which a given random number,q, falls. By a judicious choice of the step positions, this
method retains the details of the original distribution with a relatively small number of points. A
disadvantage of the method is the added computer time required for the table search, and the need
for recoding. A fast but less well-known alternative to table lookup is the alias method.1 7 It requires
two pre-calculated alias probability tables, thereby eliminating the need for a table search. A
disadvantage of this technique would be a somewhat larger coding effort.
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Fig.  6. “Equally-probable-bin” densities for Ramsauer model of 208Pb at neutron energy
E = 14 MeV. The bin numbers are (from top to bottom) 2048, 256, and 32 respectively.
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Fig.  7. ‘Equally-probable-bin’ densities for the Koning and Delaroche optical model of
208Pb at neutron energy E = 14 MeV. The bin numbers are (from top to bottom) 2048, 256,
and 32 respectively.
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Fig. 8 ‘Equally-probable-bin’ densities for the Becchetti and Greenlees optical model of
208Pb at neutron energy E = 14 MeV. The bin numbers are (from top to bottom) 2048, 256,
and 32 respectively.
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Fig.  9. Elastic scattering forward cone opening angles for Ramsauer (dashed) and
Koning and Delaroche optical (solid) models based on 32 equally probable bins. The
angles plotted are for 10%, 50%, and 90% of the total neutron scattering probability of
208Pb at neutron energy E = 14 MeV.
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We have performed several calculations to compare the effect of the angular distribution
data on a simple penetration problem.  In Table 1 the transmissivity of an infinite slab for neutrons
(En= 14 MeV) at normal incidence is tabulated for slab thicknesses. Each value was obtained using
the Monte Carlo method and averaging over 107 histories. Table 2 lists the theoretical cross sections
employed for sampling the mean free path and reaction. The “equally-probable-bin” technique was
used to sample the angular deflection for elastic scattering.

The transport quantity of main interest, the effective scattering cosine, can be defined as

† 

meff =
1

2NEP

(1- mii

NEPÂ ) (1)

Here NEP is the number of equally-probable-bins, and mi is the average scattering cosine of
bin i.  In Table 3, meff of neutrons for the B&G, K&D, and Ramsauer models is given.  The value of
the effective scattering angle has typically converged to 1% at NEP = 512 bins, though in some other
nuclei and energies not shown here we occasionally found examples where convergence required
2048 bins.

In all cases shown in Table 1 or Table 3, the Ramsauer model is preferable to an out-of-date
optical model fit to the data.
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Table 1: Transmissivity through Slab for En=14 MeV for several slab thicknesses given in
units of number of 208Pb atoms per unit area.

102 2 / cm2 102 3 / cm2 102 4 / cm2

Ram 32-bin 0.9722(3) 0.7524(2) 0.04949(6)
Ram 2048-bin 0.9724(3) 0.7540(2) 0.05011(6)
KD 32-bin 0.9738(3) 0.7613(2) 0.04782(6)
KD 2048-bin 0.9739(3) 0.7622(2) 0.04814(6)
BG 32-bin 0.9716(3) 0.7435(2) 0.04080(6)
BG 2048-bin 0.9713(3) 0.7442(2) 0.04115(6)
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Table 2: Cross Sections at En = 14 MeV [b = 10-24 cm2].
Total [b] Absorption [b] Elastic [b]

Ram 5.377 2.757 2.620
KD 5.289 2.526 2.763
BG 5.340 2.847 2.493
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Table 3: Effective scattering cosines, meff , as a function of the number of equally-probable
bins, NEP , is tabulated for different models and energies.

10 MeV 20 MeV 30 MeV
NEP Ram K&D B&G Ram K&D B&G Ram K&D B&G

4 0.1407 0.1675 0.1411 0.1348 0.1330 0.1320 0.1312 0.1315 0.1301
8 0.0948 0.1351 0.0953 0.0832 0.0777 0.0722 0.0756 0.0702 0.0692

16 0.0809 0.1213 0.0822 0.0641 0.0513 0.0458 0.0528 0.0494 0.0462
32 0.0787 0.1203 0.0760 0.0620 0.0437 0.0363 0.0481 0.0409 0.0363
64 0.0786 0.1202 0.0748 0.0623 0.0415 0.0332 0.0484 0.0375 0.0327

128 0.0790 0.1201 0.0745 0.0618 0.0408 0.0319 0.0487 0.0364 0.0315
256 0.0789 0.1201 0.0745 0.0621 0.0405 0.0316 0.0489 0.0360 0.0310
512 0.0789 0.1201 0.0745 0.0621 0.0405 0.0316 0.0488 0.0359 0.0309
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V. Conclusions

For many applications of transport calculations, such as deep penetration through radiation
shielding, the most important quantities are average elastic scattering properties, neutron removal
and energy deposits.  We have demonstrated that the Ramsauer model is reasonably accurate at
describing these features.  Given its simplicity, the Ramsauer model may be useful in fast neutron
applications for calculating differential elastic scattering distributions and reproducing the
magnitude of integrated total, elastic, and reaction cross sections.

For applications where precision on the order of 1% or better is required, we have
demonstrated that more careful attention must be paid to (1) accurately representing the relative
magnitudes of the elastic and reaction cross sections and (2) improving the resolution of scattering
angles over the current 32 equally-probable-bin method.

This work was performed under the auspices of the U.S. Department of Energy by the
UC, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
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Appendix

To understand the depth of the minima in angular distributions, we begin with the plane-wave Born
approximation (PWBA) for elastic scattering from a real central potential.  In this model, as in the
Ramsauer model, there are deep minima for which the cross section vanishes.  However, these deep
minima are absent in realistic optical model calculations. Three features of optical model
calculations that lead to less deep minima in the angular distributions than are present in the PWBA
are (1) the use of distorted waves instead of plane waves, (2) an imaginary potential which has a
different form factor from the real potential, and (3) the spin-orbit interaction which leads to
different form factors for neutron parallel and anti-parallel couplings of the neutron spin and orbital
angular momentum vectors.  Of these three effects, the correct use of distorted waves plays the most
significant role in removing the deep minima and in making the diffraction pattern more irregular.
Distorted waves are inherent in the Ramsauer-model assumption of a single phase shift for all
partial waves – refraction effects have been shown to result in the usefulness of this approximation
for incident neutron energies in the range 5 < En < 60 MeV in Ref. 5.  However, the correct effect of
distorted waves on the angular distribution of elastically scattered neutrons is not included in the
Ramsauer model, nor would such an extension be sensible.

One simple extension to the Ramsauer model that removes the deep minima is to account for the
above-mentioned effects by introducing a second term with a different radius that adds incoherently
to the first.   We note here how one of the effects, the spin-orbit potential, leads to two incoherent
terms in a realistic optical-model calculation.  Unlike the central potential, the spin-orbit potential
can flip the spin of the projectile.  The differential cross section is the incoherent sum of two
amplitudes:  the non-spin-flip amplitude and the spin-flip amplitude.  These amplitudes are
incoherent because they lead to final states that are distinguishable.

In such a two-radii Ramsauer model, Eq. (6) for g would have 2 terms, one term where R Æ R+DR
and another term where R Æ R-DR.  These two terms have minima at different angles and when
added together result in shallower minima.  For example, in Fig. 10 we show the relative differential
cross section that results in this model for n + 208Pb at En = 14 MeV for DR/R = 0.1.  While the
addition of a new parameter, DR/R, would lead to a somewhat better representation of the angular
distribution of the elastically scattered neutrons, it would not be able to faithfully reproduce the
irregularities in the angular distribution (i.e., the spacing of the maxima and minima) which arise
due to distortion effects.
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Fig. 10.  The relative differential shape-elastic cross section is shown for a two-radii
Ramsauer model, resulting in shallower minima.
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